Skip to main content

Reflection Of Light

Reflection of Light

What is Reflection of Light?

When a ray of light approaches a smooth polished surface and the light ray bounces back, it is called the reflection of light. The incident light ray which lands upon the surface is said to be reflected off the surface. The ray that bounces back is called the reflected ray. If a perpendicular were to be drawn on reflecting surface, it would be called normal. The figure below shows the reflection of an incident beam on a plane mirror.

Here, the angle of incidence and angle of reflection are with respect to normal to the reflective surface.

Reflection of Light

Laws of Reflection

The laws of reflection determine the reflection of incident light rays on reflecting surfaces, like mirrors, smooth metal surfaces, and clear water. Let’s consider a plane mirror as shown in the figure above. The law of reflection states that

  • The incident ray, the reflected ray and the normal all lie in the same plane
  • The angle of incidence = Angle of reflection
Types of Reflection of Light

Different types of reflection of light are briefly discussed below:

  • Regular reflection also known as specular reflection
  • Diffused reflection
  • Multiple reflection

Regular/ Specular Reflection

Specular Reflection refers to a clear and sharp reflection, like the ones you get in a mirror. A mirror is made of glass which is coated with a uniform layer of a highly reflective material such as powder. This reflective surface reflects almost all the light incident on it uniformly. There is not much variation in the angles of reflections between various points. This means that the haziness and the blurring are almost entirely eliminated.

Regular Specular Reflection

Regular Specular Reflection

Diffused Reflection

Reflective surface other than mirrors, in general, has a very rough finish. This may be due to wear and tear such as scratches and dents or dirt on the surface. Sometimes even the material of which the surface is made of matters. All this leads to a loss of both the brightness and the quality of the reflection.

In case of such rough surfaces, the angle of reflection when compared between points is completely haphazard. For rough surfaces, the rays incident at slightly different points on the surface is reflected in completely different directions. This type of reflection is called diffused reflection and is what enables us to see non-shiny objects.

Diffused Reflection

Diffused Reflection

Multiple Reflection

A single image is formed when an object is placed in front of a mirror. What happens if we use two mirrors? Since reflective surfaces such as mirrors are very good at preserving the intensity of light in a reflection, a single source of light can be reflected multiple times. This multiple reflection is possible until the intensity of light becomes low until the point that we cannot see. This means that we can have almost infinite multiple reflections. We can also see an image at every individual reflection. This means that each image is the result of an image or an image of an image or an image of an image.

The number of images we see is dependent largely on the angle between the two mirrors. We see that as we go on decreasing the angle between the mirrors, the number of images go on increasing. And when the angle becomes zero, i.e., when the mirrors become parallel to each other, the number of images becomes infinite. This effect can be easily observed when your barber uses another smaller mirror to show you the back of your head. When this happens, not only do you see the back of your head, you also see innumerable images of yourself. The variation of the number of images of an object placed between two mirrors with the angle between the mirrors can be described by a simple formula:

Comments

Popular posts from this blog

Light-Reflection and Refraction

Light-Reflection and Refraction Revision Notes on Light Reflection and Refraction Laws of Reflection The angle of incidence is equal to angle of reflection Incident ray, reflected ray and normal all lie in the same plane. Spherical Mirrors Most common type of curved mirrors are spherical mirrors. Mirrors in which reflecting surface are spherical in shape, is known as spherical mirrors. Reflecting surface of a mirror can be curved inwards or curved outwards. The one which is curved inward is known as concave mirror and the one which curved outwards is known as convex mirror. Fig.1. Spherical mirrors Some Important Terms Pole- The centre of the reflecting surface in a spherical mirror is a pole. It is represented by P. Centre of curvature- Reflecting surface in a spherical mirror has a centre, this is known as centre of curvature. Centre of curvature in convex mirror lies behind the mirror whereas in concave mirror, it lies in front of the mirror. Radius of curvature- The rad...

Motion class IX

NCERT Solutions for Class 9 Science Chapter 8: Motion NCERT Solutions for Class 9 Science Chapter 8 Motion  is designed with the intention of clarifying the doubts and concepts easily. Class 9 solution in science is a beneficial reference and guiding solution that help students clear doubts instantly in an effective way.  NCERT Solutions for Class 9 Science  approaches students in a student-friendly way and is loaded with questions, activities, and exercises that are board and competitive exam-oriented. NCERT Solutions for Class 9 science is the contribution by the teaching faculties having vast teaching experience. It is developed keeping in mind the concept-based approach along with the precise answering method for examinations. Refer NCERT Solutions for Class 9 for best scores in board and competitive exams. It is a detailed and well-structured solution for a solid grip of the concept-based learning experience. NCERT for Class 9 Science Solutions is made av...

refraction of light

Refraction   is the bending of light (it also happens with sound, water and other waves) as it passes from one transparent   substance into another. This bending by refraction makes it possible for us to have lenses, magnifying glasses, prisms and rainbows. Even our eyes depend upon this bending of light. Without refraction, we wouldn’t be able to focus   light onto our   retina Rights: University of Waikato. All Rights Reserved."> Refraction By using the example of spearing a fish, Associate Professor Gordon Sanderson, an ophthalmologist from Otago University, explains the principle of refraction. Change of speed causes change of direction Light refracts whenever it travels at an angle into a substance with a different refractive index (optical density ). This change of direction is caused by a change in speed. For example, when light travels from air into water, it slows down, causing it to continue to travel at a different angle or directio...